BLCL的博客小馆

标签 · LLM

首页

关于

归档

loading..
Python乱七八糟记账BeancountLLMRAG

RAG 基本应用——Beancount 记账效率优化

本文来自于一个手工记账博主的脑洞大开,尝试通过向量数据库和 RAG 来想办法让自己少打几个字。顺便宣传一下最近开源的记账 bot. 背景 自从 2020 年将记账系统迁移到 Beancount 后,我就开发了一个 Telegram Bot 来辅助我记账。通过它,我可以使用 {金额} {流出账户} [{流入账户}] {payee} {narration} [{tag1} {tag2}] 的文法来快速生成一条交易记录并落库。虽然后来将这个 Bot 迁移到了 Mattermost 上,但四年以来,核心逻辑并没有做任何改动。 最近经常骑车去打球,每次骑完车之后总需要掏出手机去记账,输入诸如 1.5 支付宝 哈啰单车 自行车 的文本。虽然已经手动记账记了七年,但完全相同的内容记得次数太多了,也难免会有些枯燥。 ..

更多
loading..
ChatGPTLLM

一日一技:三分钟离线运行开源大模型

经过一年多的发展,各种开源大模型现在已经相当不错了。国产的Qwen 1.5的生成效果已经能满足一些日常使用。有一些同学可能之前一直在用网页版的ChatGPT、Kimi Chat、文心一言或者通义千问,那么你可能会遇到如下一些问题:网络问题。例如ChatGPT需要特殊的网络才能访问。审查问题。国产大模型会大量屏蔽关键字,有一些你觉得完全没有任何问题的回答,它会告诉你不符合法律规范,不能回答。不能自定义模型,网页版的这些大模型,你没有办法做微调,难以自定义内容。当你花了大量时间设计了一个高级Prompt,把模型洗脑成了猫娘,结果第二天它又不能用了。隐私泄漏问题,担心大模型的开发商把你问的问题和上传的信息挪作他用。当你被这些问题困扰,那么你可以考虑离线运行开源大模型。完全不需要网络,因此不存在隐私泄漏的问题。你..

更多